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Introduction: 
 
“Improving hands-free input to the BMIST application” is the 
broadest description of the work that was to be done in this 
contract.  The specifics were to investigate a number of speech 
recognition user interfaces strategies (noise injection being a 
primary one). And the ultimate contract deliverable is an 
integration of the successful research into a working BMIST 
application. 
 
An initial observation was that speech recognition does work 
when the modeling of the speaker’s voice in his environment is 
accurate. A method to obtain accurate speech recognition in real 
environments would be to dynamically change modeling.  If we 
have a “good set of models” created in a quiet environment, and 
can track environment changes, we can create a current set of 
“good models” by injecting the current noise background into the 
“quiet models”, making “noise models”. 
 
In the contract proposal we listed four techniques to 
investigate and combine to make “good” models, they were: 
  

1) Conventional enrollment (reading prompts) 
2) Noise injection (creating models from quiet models and a noise sample) 
3) Supervised Adaptation 
4) Unsupervised Adaptation 

 
This report is a chronology of the work done, reporting on the 
results of the investigated strategies.  And, it is the 
companion to the final deliverable, documenting the 
deliverable that is the project goal: 
 
At the conclusion of the contract there will be a final deliverable that is a 
working BMIST application that incorporates the best strategies found. 
 
An unspecified key detail is:  What does “working” mean?  Who 
judges what working means?  The answers are Kim Chism and 
Renee Clerici, the project managers responsible for the BMIST 
app, who had oversight of this contract.  The criteria for 
“working” was their app would be deployable, that the users 
would be able to use it, and hopefully prefer using it over 
any previous method.  Their focus is on user frustration, 
making an app that a user “likes” using.  They care little 
about research per se, except how they can use new technology 
to enable a “good” solution. These are proper criteria, and 
this standard drove the research in unexpected directions 
through the course of the contract. 
 
 



The contract research goals were in two parts: 
1) Research in using speech in the User Interface to create 

a working solution 
2) Research investigating noise injection strategies in 

particular 
 
We have delivered on these goals.  In the body of this report 
we will give the details of that work.   
 
The ultimate deliverable is the current version of “AHLTA 
Mobile”.  (See the TATRC group for a demonstration -- they 
have been showing it broadly.)  It has generated wide 
interest, and is perceived to be “a solution”. On the strength 
of its performance, the AHLTA Mobile application has been 
recognized as a “Program of Record”, it is not just a research 
project anymore. In response to its new status, the project 
has been moved from TATRC to DHIMS.  The work done under this 
contract has been very successful. 
 
 
 
 
 
 
Body: 
 
The development group of TATRC had four reasons for this 
contract. First, the speech recognizer is accurate; it must be 
accurate to be useful. Second, it takes up little memory, so 
it can run on smaller platforms like a handheld. Third, they 
recognized the power that speech recognition in noisy and 
multi-speaker backgrounds would have. These situations are 
commonly encountered, and are very difficult for standard 
speech recognizers. Fourth, they appreciated that both speech 
recognition and speech user interfaces are very specialized 
fields and involving a speech UI expert would greatly enhance 
the likelihood of a successful project. 
 
 
In our kick-off meeting we set up the project plan. The TATRC 
group outlined a basic application to use as a vehicle to 
explore voice interfaces. They set up a joint software project 
on the Internet so that both a group inhouse at Fort Detrick 
and HandHeld Speech consultants in Massachusetts, could work 
on it. Using version control, all the changes were documented. 
When the changes were substantial, these changes were rolled 
up into a new version of the application. The team consisted 
of Mike Vandre and John Pajak at Fort Detrick MD, and Greg 



Gadbois, in Amesbury MA. Mr. Vandre and Mr. Pajak provided the 
test application. Mr. Gadbois implemented all the software 
dealing directly with speech. 
 
 
The original app was called “ffw” and already existed in-house 
at Fort Detrick. It ran on a tablet personal computer and used 
a touch driven interface. The goal of the ffw application was 
to document first responder data from the medic (in the field 
or in the ambulance) so that it could be sent electronically 
to the field hospital. The medic would fill out a form, by 
completing different dialog screens by tapping on-screen 
buttons. 
It was originally designed in response to asking prospective 
end users what they wished they had. 
 
The first four months of work was used to modify the interface 
of this application from a touch driven interface to one that 
was both touch and speech driven. The first deliverable 
“Integrating HHS SDK into BMIST” which was planned to require 
two man-months was delivered on time. 
 
This required quite a bit of engineering. The c# wrapper over 
the “hhsDemon” recognition service evolved tremendously. I 
added new features to the SDK to simplify the implementations 
needed in the ffw app. Large revisions were made in the 
underlying libraries. 
 
After four months, the application was functional enough to 
get subject matter expert (SME) feedback.  The goal was to get 
assessments about the existing functionality and an evaluation 
of strengths and weaknesses. 
 
The SME evaluations were very interesting. They believed that 
the speech recognition aspect of the interface worked 
sufficiently to do the job. However, they didn’t want the 
hybrid application that required the first responder to look 
at the screen. Given that the speech recognition was very 
good, they wanted an application that didn’t require the first 
responder to look away from the patient to enter data. With 
the hybrid touch and speech driven application, they had the 
job of providing care, and a second job of documenting the 
care, which either could interfere with their ability to 
provide the care or would have to rely on their memories of 
what they had done (a source of error). Their goal was to have 
an application that acted like a smart assistant who was 
transcribing their data. This new interface would be purely 
voice driven. 



 
In response to those realizations, a brand new application was 
conceived. Inhouse it was called TraumaTalk – it is the 
prototype for AHLTA-Mobile. While we learned a lot in building 
ffw, it was actually a blessing that we got to throw out the 
ffw codebase and start from scratch. We were able to redesign, 
eliminating some basic design flaws that were inherent in the 
touch-centric design. 
 
TraumaTalk was to be purely voice driven and not require 
interaction with the machine either by touch or reading 
displays. The TATRC group conceived the form filling as a 
dialog, the system prompting with questions (via TTS), the 
user responding, and depending on answers, the system asking 
appropriate following questions. The content of a form was 
conceived as essentially lists of questions and their 
accompanying responses. The TATRC design group stored the 
contents of a form as a simple database (in an html format), 
separating it from a generic machine that loaded such 
databases. In this manner, it is easy to change the questions 
and logic flow by just editing an html text file. In fact 
TraumaTalk is a generic solution to form filling – change the 
database and you are filling out a different form. Later, the 
TATRC engineers built tools to create and edit html databases. 
A software engineer is not needed to create or edit a new 
form. Using the tools, anyone can create/edit the databases 
that the generic TraumaTalk machine loads. 
 
The generic machine loads an .html database. When it loads, it 
creates a state machine with one start state corresponding to 
the start question. As it loads each question, it generates a 
speech recognition rule containing the acceptable responses.  
The questions are very specific; there are typically a small 
list of single-word or short-phrase responses that are 
appropriate. At any given time during a dialog, there is one 
current question and a short list of the things the user might 
reasonably say that are active in the speech recognizer. The 
speech recognition problem is very easy. There is no open 
natural language problem to deal with, where the system would 
have to recognize unexpected utterances. When the speech 
recognition problem is kept easy enough, the system works 
well, even in noise. 
 
One important design flaw of ffw was addressed at the outset, 
an “undo”. 
 
Speech recognition is inherently statistical and can fail. It 
is not a disaster to mis-recognize some speech if it is easy 



to back out of a mistake and try a different path. A multiple 
undo/redo is an essential feature for a speech recognition 
app. 
The undo was a feature that was never implemented in ffw (it 
was proving to be a bear to retrofit). I built an undo 
capability into TraumaTalk in its basic structures. 
 
I played with our initial version of TraumaTalk. The speech 
recognition and the interface all worked, but after a bit, the 
interaction became irritating. The problem was that the 
interface was designed for a novice user not for an expert. 
The same questions that were reasonable the first few times 
became tedious with increased expertise.  Having filled out 
forms a few times, the questions could be predicted. The user 
had to, wait for utterances to finish such as “What 
medications were given?” This was inefficient. I wanted a one 
word question e.g. “Medications?” So I came up with the idea 
of a short-questions/long-questions option. The idea is, once 
you have some expertise and know the questions, you only need 
a one word cue to remind you where you are in the form, and 
what the current question is. 
 
Next I added a confirmation/no-confirmation option, where it 
would echo the speech recognition result. The system 
optionally speaks back what it understood the speaker to say. 
 
I eventually came up with a clarifying understanding of how 
the user interface app should work by using a thought 
experiment. Suppose there were two people filling out forms, 
one had the forms in front of him and was asking questions and 
writing answers, the other was making all the measurements and 
saying the answer aloud so that the other could write them. 
Two people doing this job would start by saying everything, 
but eventually (if the people got good at it) the dialog would 
get very terse. Only the minimal important words would be 
spoken.  They would start with long questions, but quickly 
evolve to single word cues for the questions.  When confirming 
an answer, only the most relevant words would be repeated. In 
cases where the evolution of states is uniquely determined by 
the responses, the confirmation is the next question, and no 
explicit verbal confirmation is needed. 
 
In other cases for example where there is a yes/no answer and 
the state machine evolves to the same state for both answers, 
confirmation might take the form of answering yes with “will 
do” and no with nothing. In the situation where the medic says 
“blood pressure 140 over 70”, confirmation echoes “140 over 
70”. The echoed response is the minimal information and in 



particular is the information that the recognizer is most 
likely to mis-recognize. 
 
Another example of confirmation, suppose the system has just 
queried “What medications were given?” if the user says “Short 
questions”, the system confirms by saying “Medications?”  The 
goal of confirmation is to communicate the most information 
with the fewest words.  Repeating the question cue affirms the 
switch to terse mode and helps him stay on track in the form. 
 
 
 
 
 
 
The clarifying ideas are: 
 
1) Make your questions very specific, and the natural 
responses should be single-words or short-phrases (get rid of 
the natural language problem). 
 
2) What is the minimal spoken information to indicate 
questions and confirmations?  (maximize information content 
while minimizing syllables) 
 
3) Always keep in the back of your mind: How would two people 
who were are either learning the job or becoming expert at it 
operate? 
 
Support was added to the html database so the terse modes are 
fully supported. 
 
The resulting speech recognition application is so transparent 
it is a joy to use. The user soon looses awareness of the 
speech recognizer, he can focus on making his measurements and 
doing his or her job. The application becomes a job 
performance aid rather than an impediment. 
 
The interesting perspective is to compare this user interface 
to standard ones used for automated answering and routing of 
phone calls. The telephony solutions are similarly eyes-free 
applications.  However, they are inefficient and unpleasant to 
use. These systems represent the state of the art in speech 
recognition interfaces 
 
That perspective makes you realize what a huge step forward we 
have made with this the user interface of this app. I call 
this style of solution a “Terse Directed Dialog” (TDD). It is 



an evolution on the telephony-like (small vocabulary) 
solution. But it eliminates the frustration of using those 
types of systems, while improving efficiency.  
 
I believe it changes the game a lot. 
 
It is important to understand the TDD style solution in the 
context of current art. 
 
The crux of the difficulty with speech is “How do you 
communicate to the user, what the speech recognizer is looking 
for?”  There have been two solutions.   
 
1)Telephony type solution, where the speech recognition 
problem is reduced to a small vocabulary problem 
 
2)Natural Language (pseudo Natural Language) queries where you 
let the speaker say almost anything. 
 
The telephony solutions are attractive because they work.  
Current recognizers are good enough that they can reliably do 
small vocabulary problems even with noisy input.  Their 
downside has been user frustration navigating complicated 
menu’s. 
 
The Natural Language research is a response to the perceived 
failure of telephony style solutions.  Unfortunately there are 
a number of hard problems with natural language systems.  
Chiefly, current recognizers are inadequate to the problem 
especially with degraded (noisy) input.  There is also a 
problem with extracting meaning and creating the appropriate 
response.  Someday natural language solutions may be 
attractive, but they are not reliable today. 
 
The Terse Directed Dialog is a solution that works today, even 
on mobile devices.  It relies on how smart people are.  It is 
because people are smart that they find the telephony 
solutions irritating.  After they have navigated a menu once 
or twice, they become impatient when the system treats them as 
if they didn’t know what’s going on. Allowing them an 
accelerated mode solves that problem.  It uses their 
intelligence instead of hindering it.  People are much more 
trainable than computers.  A Terse Directed Dialog capitalizes 
on that fact. 
 
I think the class of problems that are amenable to a TDD 
solution is huge, and deploys today.  I envision systems where 
after a short getting acquainted time, the user primarily uses 



the system in a terse mode.  Occasionally, when he is doing 
something he rarely does, he false back to “Long Questions”, 
but quickly returns to a terse mode.  He only gets verbose 
information where he needs it.  And he is the judge of when 
that happens. 
 
I believe the idea of a Terse Directed Dialog will have large 
impact.  TraumaTalk itself might do that inside the DOD.  
TraumaTalk is really a TraumaTalk database and a generic TDD 
engine.  To do other problems in a TDD manner only requires 
creating a new database, and tools exist to make that job 
easy. 
 
My guess is that the ideas of a Terse Directed Dialog are not 
new, that there exist implementations of “expert modes” that 
share some or all these features.  The value of the research 
is having a clear statement of those principles, then pursuing 
them systematically in the app.  Developing the TDD concept 
was both a surprise and by far the most important thing done 
in this contract. 
 
 
After implementing TDD, we took stock of where we stood, we 
re-evaluated the application.  If you have good models, 
TraumaTalk is a joy to use.  The basic interaction is a joy.  
The important thing to focus on is the ‘if’ clause – “if you 
have good models”. 
 
The TraumaTalk TDD engine is using speaker dependent models.  
A new user went through a conventional enrollment process 
(repeating prompts) to create models.  If enrollment takes too 
long, people find the process onerous.  The strategy employed 
in the TDD engine was to do minimal, even insufficient 
enrollment, then let the user force further adaptation during 
use of the real app.  It became clear in some of our testing 
that some people came out of enrollment with particularly bad 
models. 
 
As an aside to the topic of noise injection (one of the main 
topics in the written contract, we will get to noise injection 
later in this report), if you don’t have good models working 
in quiet, injecting noise does not fix anything.  There is no 
point in doing any work with noise injection if you can’t 
first make models that work well in quiet.  Noise injection is 
a secondary solution and relies on first making good “quiet 
models”. 
 



So the most important thing to improve was “how to create good 
initial models in quiet”.  Principally we needed to do 
“better” with our conventional enrollment.  And we would like 
to do “better” without seriously adding to the time spent 
enrolling.  
 
The way our conventional enrollment process worked was, a new 
user read some prompts, some measurements were made, then a 
base set of models was warped to fit the measurements.  The 
“warping” is a fairly crude process.  Then further prompts are 
collected and a more refined adaptation process continues.  
The further the new user’s voice is from the base models, the 
more extreme is the warping and the resulting models are less 
consistently good. 
 
The Multi-Voice recognizer enables a new strategy that we 
decided to investigate.  It is quite easy to run multiple sets 
of models in parallel and see which models fit the voice 
better.  We can do “model search”, we don’t have to do warping 
with base models that are a bad match to the voice.  The idea 
is we can collect a catalog of base models spanning user 
voices, do model search, then seed the existing model creation 
process with a close fit. 
 
We implemented this strategy.  Our initial tests suggest this 
technique will work very well.  Currently our implementation 
is incomplete; we have only two sets of base models.  With 10 
to 20 sets of models and just a “model search”, we should have 
a model match that works as good as speaker-independent 
modeling.  With a larger set of base models and a search 
feeding a creation process, we believe we will reliably make 
excellent quiet models. It is a future research/engineering 
problem to obtain the best tradeoffs between performance and 
enrollment time.  The next step in this direction is a 
significant undertaking and is beyond the scope of this 
contract. 
 
In the first ffw app we implemented conventional enrollment, 
supervised and unsupervised adaptation.  In the new TDD engine 
we have implemented an improved enrollment search/creation 
method and supervised adaptation.  The unsupervised adaptation 
implemented in the earlier software was quite interesting and 
we have intentions of including such methods in the future.  
Before we begin the final discussion of noise injection, we 
would first document the research done on unsupervised 
adaptation in the ffw app. 
 



The strategy is to watch the behavior of the user to detect 
when he has corrected a mis-recognition – detect which 
utterances and phrases were involved and do corrective 
adaptation.  Specifically in the ffw app, the easiest way for 
the user to correct a mis-recognition was to just to repeat 
the phrase, hopefully the second time the system would get it 
right.  (When the models are decent, because the second time 
around the user says the phrase more carefully, typically the 
system does get it right.)  In the software we kept the last 
couple utterances around and correlated the choice lists of 
the previous utterance with the current one.  
 
For example, suppose a user says “temperature 101.5” and the 
recognizer top choice was “temperature 109.5”.  (Suppose the 
second choice was right.)  The user repeats saying 
“temperature 101.5” again.  Suppose this time the system gets 
it right.  The software looks back one utterance and finds the 
current top choice was the high in the choice list of the 
previous utterance. We detect that we got it wrong the first 
time but now we know what the right answer is. Probably some 
of the acoustic models in the word “1” are not so good.  We 
use the second utterance to adapt the models (without asking 
the user).  That’s the basic idea.   
 
We can be a little more sophisticated, if the top choice is 
the same as the previous top choice, (we see that he is 
repeating himself, probably we think we are getting it wrong 
twice in a row) we claim the second choice as the answer and 
use that for adaptation. 
 
The last variation is that we only mark the utterance as “to 
be adapted later” and we wait until we are sure he is done 
(that he doesn’t repeat himself again or force an answer 
through touch).  Only when we believe both that he is happy 
with the utterance and he has moved on, do we adapt the 
models. 
 
This strategy was seen to work in the ffw app.  It had the 
effect that “decent” models get sharpened up.  When top 
choices are right all the time, it does nothing to the models. 
 Where there are close calls and occasional mis-recognitions, 
models are refined and the close calls are separated.  It is a 
good unobtrusive method to evolve “decent” models into 
“excellent” models.  But it does not replace supervised 
adaptation.  If the user repeats the phrase again and again 
and again, and it never comes up right, the method doesn’t 
work.  You can’t use unsupervised adaptation to make bad 
models good.  It only augments supervised adaptation. 



 
Supervised adaptation is doing adaptation with an utterance 
where the phrase spoken is known (either because the user was 
prompted to say the phrase or because he has selected it from 
a list).  A mature app will have both types of methods.  
Supervised adaptation empowers the user and is crucial as a 
last resort to fix any problem, unsupervised is desirable 
because it so unobtrusive.   
 
The only downside for implementing unsupervised adaptation, is 
that tracking high level behavior is a complication making the 
app harder to evolve. The codebase is more complicated. When 
the app is “young” and changing rapidly, it is best to wait 
before implementing unsupervised adaptation.  We plan to add 
unsupervised adaptation to the TDD engine eventually. 
 
 
The last part of the research contract was investigating noise 
injection.  The SDK supported some basic noise injection 
features.  We will give a quick intro to the ideas of noise 
injection next. 
 
When digitized sound is captured, the first thing done is to 
window and fourier transform it.  The power spectrum in 
frequency domain is further massaged and the result is boiled 
down to a “speech vector”.  The voice model representing a 
phoneme is a sequence of characteristic speech vectors.   
 
Here are the steps: 
 
PowerSpectrum = [ FFT( DigitalSound ) ]2  à P = F( 
snd ) 
SpeechVector = Massage( PowerSpectrum )  à S = M( P 
) 
 
 
The process “M” can be inverted.  We can take a characteristic 
speech vector and take it back to a power spectrum.  In the 
power spectrum we can add the signature of the current 
environmental noise.  Then we transform this new power 
spectrum back to a speech vector.   
 
 
 
 
 
 
The process is: 



 
Pmodel = M-1( Smodel ) 
Pnew = Pmodel + Pnoise 
Snew = M(Pnew ) 
 
We developed M and M-1 prior to this contract. 
 
Actually there is one caveat that we knew from earlier work.  
Typically recognition is more accurate when you leave more 
signature of the model and don’t swamp it with the noise 
spectrum.  You want to inject a scaled value of the average 
noise.  There is a parameter ‘c’ to optimize based on a noise 
measurement. 
 
Pnew = Pmodel + c * Pnoise 
 
 
One of the first things we did in this contract (for noise 
injection) was to correlate measures of the noise with an 
optimal value of ‘c’, a noise scaling.  We needed a function 
that takes a measure of the noise and predicts a good value of 
the scaling. 
 
In our signal processing there are some power measurements 
that would be convenient to correlate with optimal injection. 
 We played with a number of them.  A good measure was that 
already existed in our signal processing front end was 
512*log( pwr ) where pwr is the sum of the power in the 
voicing part of the spectrum.  
 
This parameter, call it ‘k’, (with the particular mic gain 
level we used) ranged from about 40-100 in silence and had 
voicing peaks of about 2325.  We could measure the silence 
just before and after an utterance, and also the average peak 
power during the utterance.   
 
In quiet a typical pair was: 
(ks, kv) 
(50, 2325) 
 
In noise a pair might be: 
(1300, 2325) 
 
 
If gain levels are changed, they add a multiplicative factor 
to the raw pwr: 
 
kn = 512*log( pwr * a ) = ko + 512*log( a ) = ko + constant 



 
Define K = kv -ks; K is a log of the signal to noise ratio.  
Then Kn = Ko and is independent of a gain setting. 
 
We measured this parameter K, and correlated it with the 
optimal injection of the noise spectrum.  Referring back to 
the power spectrum formula for injection: 
Pnew = Pmodel + c * Pnoise 
 
We tabulated a function  c = f( K ), that was the optimal 
injection value 
 
Generally c is a number between 0 and 1.  To maintain integer 
arithmetic, we will use a number between 0 and 1024, then 
divide by 1024. 
 
c = C/1024; 
Pnew = Pmodel + (C * Pnoise)/1024; 
 
 
C(K) is best describe in a piecewise way. 
 
 
C(K | 1140<K)     = 0;    (quiet) 
C(K | 690<K<1140) = 1021 - K*2/45; (low noise) 
C(K | 610<K<690)  = 240 + K;  (mid noise) 
C(K | K<610)      = 685 + K/8;   (high noise) 
 
(Depending on how hard the recognition problem, if K<300 the 
accuracy may be unusable.) 
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One last note, there is a hardware/gain/sanity check: in 
quiet, K should range from 2230 to 2280 (quiet should be 
around 50, voicing near 2325).  If the hardware performs 
differently, the data should be scaled to the proper range. 
 
 
So to inject, we need frames of the background noise, and an 
utterance to get the signal to noise ratio of voiced-speech to 
environmental-noise.  It would be best if we kept running 
averages of both.  We proceeded to make a simple app with a 
dialog to collect the background noise and an utterance.  
(That app will be demonstrated at our final report meeting.)  
The processes of the dialog are easily collected and could be 
added as a background process to a normal app, and noise 
injection could be done automatically.  We could continually 
create models in the background and track the noise 
environment. We did not apply this logic yet to AHLTA Mobile. 
Like unsupervised adaptation, it will add complexity to the 
source code making the app harder to evolve.  It is something 
to be added to a mature app. 
 
 



  
 

Key Research Accomplishment: 

 

1) Developed c# wrappers for the hhsDemon 

2) Implemented a Terse Directed Dialog 

3) Explored Unsupervised Adaptation 

4) Seeding enrollment with “model search” 

5) Explored noise measures to control noise injection 

 

These features were significant to the current success – 

AHLTA-Mobile is now a program of record. 

 
 

Reportable Outcomes: 

 

1) Showed another HandHeld Speech customer (a group at Naval 

Undersea Warfare Center, Newport RI) how to do “model 

search”. 

2) Applied for another BAA contract to continue working on 

AHLTA-Mobile (to further improve rejection and enrollment 

process). 
 

 

Conclusion: 

 

The most important result of this contract is that the AHLTA-

Mobile app’s user interface is significantly improved.  On the 

strength of the improvements, it is now a program of record. 

 



Of the features driving it, the most important is the Terse 

Directed Dialog.  That concept is a general solution to a wide 

class of problems. 

 

The next most important thing is “model search”.  Model search 

holds the promise of speaker-indepent recognition that works 

for everyone. 

 

I believe the unsupervised adaptation strategy is of lesser 

importance.  It is a very nice feature and one likely to be 

incorporated into a finished app.  But it will not have as 

large an impact as both model search and TDD. 

 

Similarly, noise injection is not as important.  There may be 

some situations where it will make a difference, but the TDD 

concept marginalizes the number of those cases.  The 

application of Terse Directed Dialogs, reduces the perplexity 

of the recognition problems – it makes them easy. A recognizer 

will be accurate, even in noise, when the problem is easy 

enough. 
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SBIR contract W81XWH-06-C-0082 awarded 1/16/06.  During it we 

developed the raw noise injection machinery (the “M” and “M-1” 

operations). 
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